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1. Problem statement
Finding correspondences between images is one of the

most fundamental problems in computer vision, and a key
component of the 3D reconstruction pipeline. While the
problem of image correspondence has been studied ex-
tensively for decades, finding dense correspondences in
a wide-baseline scenario still remains a challenging open
problem. We aim to develop a deep architecture to solve
the wide-baseline matching problem, i.e., the problem of es-
tablishing correspondences between a pair of images taken
from very different viewpoints.

2. Related works
2.1. Traditional handcrafted methods

Considerable effort has been put into designing better
features and descriptors to solve the wide-baseline matching
problem. The Scale-invariant feature transform (SIFT) de-
scriptor [9], which is invariant to rotation and scale, is one of
the most widely used descriptors. The SIFT feature descrip-
tor works well in certain cases for sparse correspondances
but is not very helpful for dense wide-baseline matching. A
variety of alternatives to the SIFT descriptor have been pro-
posed, emphasizing speed (e.g, the Daisy descriptor [13]) or
invariance to extreme transformations such as scale changes
[7]. Though robust, the feature extraction, description as
well as post-processing steps associated with the hand-
crafted descriptors require high-computational cost. Also,
these handcrafted feature descriptors mainly leverage low-
level image cues, lacking high-level semantic information.

2.2. Learning-based methods

Another line of work is using deep neural networks to
establish correspondences between images. Some works
try to estimate fundamental matrices and find inliers from
an initial set of putative correspondences using neural net-
works [10][14]. Although these methods could achieve
good results in the wide-baseline setting, they still rely on
traditional feature extraction and matching pipelines, not in
an end-to-end way. Recently, SuperPoint[4] uses fully con-
volutional networks to detect a richer set of interest points

than the initial pre-adapted deep model and any other tra-
ditional corner detector. However, it still fails to extract
enough keypoints in wide baseline scenarios. Another ap-
proach based on advances in deep neural networks to learn
interest point detectors [5] shows that these learned detec-
tors perform significantly better than hand-crafted features
and offer an interesting insight that changing the receptive
fields and striding effects beyond just using a good metric
loss function has an impact on the quality of learned fea-
tures. However, while this approach seems to do better than
various previous metric learning techniques, the results still
have some room for improvement while dealing with wide
baseline scenarios.

3. Approach
We propose to use deep learning techniques for train-

ing visual descriptor, which learns to find dense correspon-
dences for image matching. We start by constructing large
amounts of wide-baseline correspondences from large-scale
RGB-D dataset. We then train Siamese networks similar
to Universal Correspondence Network [3], to directly learn
the generic feature that preserves similarity for correspon-
dences from pair of images. Specifically, we use correspon-
dence contrastive loss and adopt hard-negative mining strat-
egy to achieve better training efficiency. We find that com-
bining the network with convolutional spatial transformer
produces feature descriptors that are more robust to large
viewpoint and scale changes. Experiments show that our
network trained on wide-baseline correspondence identifies
more correct keypoints than other pretrained image clas-
sification networks. Further experiments demonstrate that
our learned descriptor can generalize well toward outdoor
scenes, such as KITTI dataset [6].

3.1. Data Generation

We use Matterport3D dataset [2] which provides high-
quality RGB-D images from a large variety of camera view-
points in interior home environments. It enables us to con-
struct large amount of wide-baseline correspondences re-
quired for training a strong model. As shown in Figure
1, training samples are selected from comprehensive cam-

1



era views and precisely computed based on camera poses,
depth and surface normal annotations. We identified true
correspondences if the estimated depth of the correspond-
ing pixels falls within a radius of 10% of their true depth
and if the inner product of their surface normals is larger
than 0.3. We further removed correspondences that contain
textureless regions using Harris Corner Detector.

Figure 1. Example training image pair. Red area highlights the
matching correspondences.

3.2. Experiment Setup

We modify existing universal correspondence networks
2 for our task. Correspondence contrastive loss are used to
supervise the end-to-end training process. Contrastive loss,
as shown in the equation below, consists of two terms: the
first minimizes the distance between positive pairs and the
second pushes negative pairs in the embedding space to be
away from each other by at least a margin of m. Correspon-
dence contrastive loss is able to utilize more than 1k corre-
spondences in one pair of training images, leading to faster
training and convergence. Additionally, we use hard nega-
tive mining to mine negative pairs that violate the constrain
the most and use those to expedite the training process. A
negative pair is found by finding the nearest neighbor of ex-
tracted features from the first image that are far from the
ground truth. We will discuss more implementation details
and training process in the the following section.

L =
1

2N

N∑
i

[si||FI(xi)− FI′(x′
i)||2 (1)

+ (1− si)max(0,m− ||FI(xi)− FI′(x′
i)||)2]

4. Experiments and Results

4.1. Implementation details

We adopt the Siamese network architecture [3] to learn
the descriptors. For the feature representation extraction,
We used the ImageNet pretrained GoogLeNet [12] from the
bottom conv1 to the inception 4a layer, but stride 2 is used
for the bottom 2 layers and 1 for the rest of the network. The
ratio of positive and negative pairs for training is determined

Figure 2. Overview of the universal correspondence network [3]
architecture

in an adaptive manner, i.e., the more the hard negative ex-
amples found are, the larger the ratio of negative examples
is. This strategy is found useful in helping the network es-
cape from local minimum. However, due to the wide base-
line nature of the dataset, at the very early stage the negative
pairs will outnumber the positive pairs, thus dominating the
training loss, which causes the network to easily converge
to the local minimum by push all features away from each
other. To address this problem, curriculum learning [1] is
adopted, i.e., learning easier concepts first and gradually in-
crease the difficulty. Here the difficulty is measured by the
baseline. We train the dataset using image pairs with the
baseline less than 3 meters and then gradually increase the
baseline.

4.2. Evaluation Metrics

We use the percentage of correct keypoints (PCK) met-
ric [11] to evaluate the matching performance. Specifically,
for each feature in a query image, we find the nearest neigh-
boring feature in the reference image as the predicted corre-
spondence. If the predicted keypoint is closer than T pixels
to the ground-truth keypoint, the correspondence is iden-
tified as correct. In contrast to many previous works, we
apply no post-processing techniques, such as global opti-
mization with an MRF. In this way, we are able to capture
the performance of raw correspondences.

4.3. Experiments on spatial transformer

Convolutional neural networks can handle some degree
of spatial transformations in images, i.e., moderate vari-
ances to scale and rotation. However, due to the nature
of convolution, CNNs lack the ability to address large spa-
tial transformations implicitly. Therefore, we adopt spa-
tial transformer to explicitly enforce spatial information in
the feature representation, which imitates the patch normal-
ization in traditional handcrafted methods [9]. Unlike the
global spatial transformer [8] which learns the affine trans-
formation parameters for the whole image, we learn trans-
formation parameters separately for each local region using
the supervision of correspondence solely.

To justify the usefulness of spatial transformer, an ab-



lation study is done to see how the performance improves
with the spatial transformer. We plot the PCK curves of the
model trained with and without the spatial transformer in
figure 3. It is shown that the spatial transformer significantly
improves the PCK consistently across the whole range of
threshold. Qualitative comparison is shown in figure 4,
which can be seen that the correspondences are more ac-
curate, though not precise, when utilizing the spatial trans-
former.

Figure 3. PCK comparison w.r.t spatial transformer

4.4. Properties of the learned descriptor

The ideal local image feature should achieve both dis-
tinctiveness and robustness. In order to match well, the fea-

Figure 4. qualitative comparison between correspondences gener-
ated with spatial transformer (top) and without spatial transformer
(bottom). Colors indicate correspondences.

ture descriptor should be invariant to the change of illumi-
nation, translation, scale and rotation, etc. Since the feature
descriptors are constructed through convolution, the invari-
ance to translation is automatically satisfied. In addition,
the pooling layers in the fully convolutional neural network
can implicitly improve the network’s ability to handle minor
changes of scale and rotation in images, whereas the spatial
transformer layer can explicitly address larger spatial trans-
formations in images.

We illustrate how the learned features can deal with the
scale and viewpoint variance in Figure 6 and Figure 7, re-
spectively. The model trained with spatial transformer per-
forms better at locating keypoints, although it can be misled
by repetitive patterns in some images.

Figure 5. PCK evaluation on KITTI dataset

4.5. Generalization

We aim to learn generic descriptors which works well on
all kinds of scenes in addition to indoor scenes. In other
words, the descriptors learned on the Matterport3D dataset
should be able to generalize well to arbitrary scenes. Al-
though the network is fed with only indoor scene images,
we find that it could generalize surprisingly well on out-
door scenes such as the KITTI [6] dataset. More specifi-
cally, the model trained without seeing any KITTI dataset
even outperforms the one that trained with full supervision
on the KITTI dataset. Figure 5 shows that the our trained
model works better consistently through all pixel threshold.
It’s possible that the resistance to overfitting comes from
the low level nature of the matching task, i.e., finding cor-
respondences mainly relies on understanding of geometry
which can be achieved without knowing extensive seman-
tics in the image.



Figure 6. The scale invariance. The left, middle and right column are the nearest neighboring correspondences using feature representation
from the GoogLeNet pretrained on ImageNet, the model learned without spatial transformer, and the model learned with spatial transformer
respectively

Figure 7. The viewpoint invariance. The left, middle and right column are the nearest neighboring correspondences using feature repre-
sentation from the GoogLeNet pretrained on ImageNet, the model learned without spatial transformer, and the model learned with spatial
transformer respectively
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